local gtable = require "gears.table" -- port of https://github.com/WebKit/WebKit/blob/da934454c84ac2dcbf9fca9e5f4ac2644ef25d72/Source/WebCore/platform/graphics/UnitBezier.h local bezier = {} function bezier:sample_x(t) -- `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. return ((self.ax * t + self.bx) * t + self.cx) * t end function bezier:sample_y(t) return ((self.ay * t + self.by) * t + self.cy) * t end function bezier:sample_derivative_x(t) return (3.0 * self.ax * t + 2.0 * self.bx) * t + self.cx end function bezier:solve_x(x, epsilon) local x2, d2 local t2 = x -- First try a few iterations of Newton's method -- normally very fast. for _ = 1, 8 do x2 = self:sample_x(t2) - x if math.abs(x2) < epsilon then return t2 end d2 = self:sample_derivative_x(t2) if math.abs(d2) < 1e-6 then break end t2 = t2 - x2 / d2 end -- Fall back to the bisection method for reliability. local t0 = 0 local t1 = 1 t2 = x if t2 < t0 then return t0 end if t2 > t1 then return t1 end while t0 < t1 do x2 = self:sample_x(t2) if math.abs(x2 - x) < epsilon then return t2 end if x > x2 then t0 = t2 else t1 = t2 end t2 = (t1 - t0) * 0.5 + t0 end -- Failure. return t2 end function bezier:solve(x, epsilon) return self:sample_y(self:solve_x(x, epsilon)) end local function new(x1, y1, x2, y2) local obj = gtable.crush({}, bezier) -- Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1). obj.cx = 3.0 * x1 obj.bx = 3.0 * (x2 - x1) - obj.cx obj.ax = 1.0 - obj.cx - obj.bx obj.cy = 3.0 * y1 obj.by = 3.0 * (y2 - y1) - obj.cy obj.ay = 1.0 - obj.cy - obj.by return obj end return setmetatable(bezier, { __call = function(_, ...) return new(...) end, })